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Abstract— Image processing is any form of signal processing for which the input is an image, such as a photograph or video frame; the output of 
image processing may be either an image or a set of characteristics or parameters related to the image. Image denoising refers to the recovery of a 
digital image that has been contaminated by additive white Gaussian noise. In Existing a patch-based Wiener filter that exploits patch redundancy for 
image denoising. It uses both geometrically and photo metrically similar patches to estimate the different filter parameters. And these parameters can 
be accurately estimated directly from the input noisy image. So the grayscale denoising method can be applied to denoising the color images through 
such transformations. However such color–space conversions corrupt the noise characteristics.  In this proposed system denoising in the RGB color 
space is performed using K-Means clustering technique. A locally optimal Wiener-filter-based method and have extended it to take ad-
vantage of patch redundancy to improve the denoising performance. 
 
Index Terms— denoising, K-Means clustering, Wiener filter, image processing 
 
.   

1 INTRODUCTION                                                                     

In RECENT years, images and videos have become 
integral parts of our lives. Applications now range from the casu-
al documentation of events and visual communication to the 
more serious surveillance and medical fields. This has led to an 
ever-increasing demand for accurate and visually pleasing im-
ages. However, images captured by modern cameras are invaria-
bly corrupted by noise. With increasing pixel resolution but more 
or less the same aperture size, noise suppression has become 
more relevant. While advances in optics and hardware try to mit-
igate such undesirable effects, software-based denoising ap-
proaches are more popular as they are usually device independ-
ent and widely applicable. In the last decade, many such meth-
ods have been proposed, leading to considerable improvement in 
denoising performance. The problem from an estimation theory 
perspective to quantify the fundamental limits of denoising. The 
insights gained from that study are applied to develop a theo-
retically sound denoising method. The challenge of any image 
denoising algorithm is to suppress noise while producing sharp 
images without loss of finer details. 

 The first modern adaptive method to successfully ad-
dress these contradictory goals can be attributed to Tomasi  where 
the authors proposed a generalization of the SUSAN filter, which 
itself was an extension of the Yaroslavky filter. The proposed 
denoising by weighted aver- aging pixels similar in intensity 
within a local neighborhood. Under strong noise, identifying 
such similar pixels can be challenging. In, Takeda et al. pro-
posed a signal-dependent steering kernel regression (SKR) 
framework for denoising. This method proved to be much more 
robust under strong noise. A patch-based generalization of the 
bilateral filter was proposed in and where the concept of 
locality was extended to the entire image. Although the results 
there were encouraging, the true potential for this nonlocal 
means (NLM) method was only realize. Another patch redun-
dancy-based framework, i.e., BM3D, adopts a hybrid approach 
of grouping similar patches and performing collaborative filter-
ing in some transform [e.g., discrete cosine transform (DCT)] 
domain. It ranks among the best performing methods that define 
the current state of the art. A significantly different approach to 
denoising was introduced in K-SVD. Building on the notion of 
image patches being sparse representable, Elad et al. proposed 
a greedy approach for dictionary learning tuned for denoising. 

In proposed a hybrid approach (K-LLD) that bridged such dic-
tionary-based approaches with the regression-based frame-
works. The motivation there was that similar patches shared 
similar subdictionaries, and such sub- dictionaries could be used 
for better image modeling. A similar observation was exploited 
in the form of a nonlocal sparse model (NLSM) to improve 
performance of the K-SVD framework.The dictionary-based 
methods provide implicit modeling for natural images. More 
explicit models have also been used for denoising. 
 

 
Fig 1: Outline of Proposed System 
 
While most of the aforementioned approaches work in the spatial 
domain, a vast section of image denoising literature is devoted to 
transform domain methods. The main motivation in such methods 
is that, in the transform (e.g., DCT, wavelets, etc.) domain, it is pos-
sible to separate image and noise components, and denoising can 
be performed through the shrinkage of the transform coefficients. 
In Chang et al. showed that, using a spatially adaptive threshold 
parameter, along with the overcomplete wavelet basis, denoising 
performance can be considerably improved. Another wavelet-
domain method in was considered the model for natural mages in 
the form of homogeneous Gaussian MRFs was used to improve the 
performance considerably. In Luisier et al. proposed a denoising 
method aimed at reducing the estimated mean-squared error 
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(MSE) through wavelet thresholding. 
 In propose system, a new denoising filter motivated by 

our statistical analysis of the performance bounds for patch- based 
methods. The contributions of our paper are as follows: We de-
sign a patch-based statistically motivated redundancy exploiting 
the   Wiener filter, where the parameters of the method are 
learned from both geometrically and photo metrically similar 
patches. As will be clear from our discussions in the next section, 
our method is formulated to approach the performance bounds for 
patch-based denoising. As a side note, we also show that the 
NLM filter is an approximation of the optimal filter (in the MSE 
sense) obtained if one ignores the geometric structure of image 
patches. Although extensively used for denoising, the Wiener 
filter is usually used in conjunction with some transform basis. 
For example, the collaborative Wiener filter used in BM3D 
works in the DCT domain where an estimate of the ground truth 
(signal-to-noise ratio) is obtained through an initial filtering of 
the image. Our spatial domain method is motivated by our analysis 
of the image denoising bounds. The framework, graphically illus-
trated in Fig. 1, develop a locally optimal Wiener filter where the 
parameters are learned from both geometrically and photometri-
cally similar patches. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig2: Clustering of a simple image based on geometric similari-
ty. 
 
  For this, the noisy image is first segmented into regions 
of similar geometric structure, as shown in Fig. 2. The mean and 
the covariance of the patches within each cluster are then estimat-
ed. Next, for each patch, we identify photometrically similar 
patches and compute weights based on their similarity to the 
reference patch. These parameters are then used to perform de-
noising patchwise. To reduce artifacts, image patches are selected 
to have some degree of overlap (shared pixels) with their neigh-
bors. A final aggregation step is then used to optimally fuse the 
multiple estimates for pixels lying on the patch overlaps to form 

the denoised image. 
  

2. PLOW FILTER 
 
A.  Motivation 
 

In  the performance bounds for the problem of image 
denoising. This was done from an estimation theory point of 
view, where we seek to estimate the pixel intensity , at each 
location   from its noisy observation, i.e., 

 
 

Here , is assumed to be independent and identically distribut-
ed (i.i.d.), and M is the total number of pixels in the image. In our 
paper, we specifically considered patch-based methods, where the 
observation model can be posed as 

 
 

 
This covariance matrix captures the complexity of the 

patches and is estimated from all the geometrically similar patch-
es present in the given image. Fig. 2 illustrates what we mean by 
geometric similarity, where it can be seen that each cluster groups 
together patches containing flat regions, edges in the horizontal 
or vertical directions, and corners of the simulated box image. 
Note that such grouping is done irrespective of the actual patch 
intensities. This is justified for intensity-independent noise when 
denoising performance is dictated by the complexity of patches, 
rather than their actual intensities. The values can be then directly 
estimated from the noisy image as the number of patches (includ-
ing) that satisfy the aforementioned criterion.  

Note that the condition for photometric similarity, as de-
fined here, is stricter than that for geometric similarity. As such, 
photometric similarity can be expected to imply geometrically 
similar as well. The bounds expression in (3) thus takes into ac-
count the complexity of the image patches present in the image, 
as well as the redundancy level and the noise variance corrupting 
the image. In the bound was shown to characterize the perfor-
mance of the optimal affine-biased denoising method. In particu-
lar, for the WGN, the right-hand side of is the  performance 
achieved by the optimal linear minimum mean-squared-error 
(LMMSE) estimator, with and being the parameters of the esti-
mator. The Wiener filter is, in fact, the LMMSE estimator that 
achieves this lower bound. Thus, a patch-based Wiener filter, 
where the parameters are accurately estimated, can lead to near-
optimal denoising. This forms the basis of our approach. We out-
line the theory behind the proposed approach next. 
 
B.  Derivation and Analysis 

Irrespective of the noise characteristics, the expression 
in leads to the lowest MSE theoretically achievable by any patch-
based denoising method. This expression was derived in assum-
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ing that the underlying unknown image patches are (independent) 
realizations of a random variable.  

 
 

3. PARAMETER ESTIMATION FOR DENOISING 
 

The proposed denoising framework, graphically out-
lined in Fig. 1, requires us to infer various parameters from the 
observed noisy image. The procedure is algorithmically repre-
sented in Algorithm 1. We first identify geometrically similar 
patches within the noisy image. Once such patches are identi-
fied, we can use these patches to estimate the moments of the 
cluster, taking care to account for noise (steps 9 and 10 of Algo-
rithm 1). Next, we identify the photometrically similar patches 
and calculate weights that control the amount of influence that 
any given patch exerts on denoising patches sim- ilar to it. These 
parameters are then used in  to denoise each patch. Since we use 

overlapping patches, multiple estimates are obtained for pixels 
lying in the overlapping regions. These multiple estimates are 
then optimally aggregated to obtain the final denoised image. 
Since we use overlapping patches, multiple estimates are ob-
tained for pixels lying in the overlapping regions. These multi-
ple estimates are then optimally aggregated to obtain the final 
denoised image.  
 
A.  Geometric Clustering 

The proposed filter was derived assuming geometrical-
ly similar patches to be sampled from some unknown pdf. So 
far, we have assumed such clustering to be available to us from 
an “oracle.” To perform practical clustering, we need to identify 
features that capture the underlying geometric structure of each 
patch from its noisy observations. Such features need to be robust 
to the presence of noise, as well as to differences in contrast and 
intensity among patches exhibiting similar structural characteris-
tics. An example of such variations among geometrically similar 
patches is shown in Fig. 2. Possible choices of features include 
contrast-adjusted image patches or principal components in con-
junction with predetermined clustering guides. For  where the 
image patches can be considerably noisy, we make use of the 
locally adaptive regression kernels (LARKs) introduced for de-
noising in and subsequently adapted as features for geometric 
clustering  and object detection. We refer the interested reader to, 
where the design of the kernels is covered in detail. The number 
of clusters chosen affects the denoising result. In general, too 
few clusters can lead to structurally dissimilar patches being 
clustered together resulting in the incorrect estimation of the 
moments. On the other hand, too many clusters lead to too few 
patches within each cluster, making the moment estimation pro-
cess less robust. Fortunately, the denoised output is not too 
sensitive to the choice of the number of clusters. In our experi-
ments, we found that using a fixed value of yields good results for 
any given image, with the MSE fairly close to that obtained by 
tuning the number of clusters for that particular image. 
 
B.  Estimating Cluster Moments 
 

Once the image is segmented into structurally similar 
regions, we estimate the moments, namely, mean and covariance, 
from the noisy member patches of each cluster. The simplest of 
such estimators, i.e., the sample covariance, is the maximum like-
lihood estimate. Although other estimators, for example, boot-
strapping and shrinkage-based methods, exist, we found no dis-
cernible improvement in the denoising performance when more 
complex estimators were used. When the number of samples 
(patches in a cluster) are few compared with the dimensionality 
(number of pixels in each patch), the sample covariance can be 
unstable. For such cases, robust estimators proposed in may also 
be used. To estimate each patch independently without explicitly 
taking into account information from estimates of other overlap-
ping patches, the estimation framework is in line with the as-
sumption of the independence of underlying (noise-free) patches. 
However, in estimating the covariance matrix (in PLOW and also 
for the bounds ), we do not enforce independence on the patches, 
and the covariance matrix estimated from overlapping patches 
is not necessarily diagonal. Therefore, both in our bounds and 
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our current paper, the correlation among the underlying noise-
free patches are implicitly taken into account. 
 
C.  Calculating Weights for Similar Patches 
 

To identify patches within the noisy image that are pho-
tometrically similar to a given reference patch. Once the similar 
patches are identified for a given reference patch, we perform 
denoising with the more similar patches exerting greater influ-
ence in the denoising process. This is ensured by the analytical-
ly derived weight which determines the con- tributing factor for 
patch in denoising the reference patch. 
 

 
 
Fig3:Pixel estimation 
 
D. Aggregating Multiple Pixel Estimates 

 
Until now, we have estimated all the parameters needed 

to perform the filtering. The filter is run on a per-patch basis (alt-
hough parameters are estimated from multiple patches), yielding 
denoised estimates for each patch of the noisy input. To avoid 
block artifacts at the patch boundaries, the patches are chosen to 
overlap each other. As a result, we obtain multiple estimates for 
the pixels lying in the overlapping regions. The simplest method 
of aggregating such multiple estimates is to average them. How-
ever, such naive averaging will lead to an over smoothened im-
age. Alternatively, in keeping with earlier formulation, we can 
combine the multiple estimates in an LMMSE scheme that takes 
into account the relative confidence in each estimate. 

 
4. CONCLUSION 

 
The simplest method of aggregating such multiple esti-

mates is to average them. However, such naive averaging will 
lead to an over smoothened image. Alternatively, in keeping with 
earlier formulation, we can combine the multiple estimates in an 
LMMSE scheme that takes into account the relative confidence 

in each estimate. While mainly developed for greyscale images, 
with trivial modification, our method achieves near state-of-the-
art performance in denoising color images as well. Since the 
method works by learning the moments in geometrically similar 
patches, the interchannel color dependences can be implicitly 
captured in this framework. In a more practical setting where 
signal-dependent noise is observed, the clustering step needs to 
take into account color (or intensity) information as well. The 
noise in each cluster can be then assumed to be homogeneous, 
and the proposed filter can be independently applied in each clus-
ter. 

5.RESULTS 
 
 

Here, we evaluate the proposed denoising method through exper-
iments on various images at different noise levels. Since our 
method is motivated by our bounds formulation [1], we first com-
pare the ideal denoising performance of our method (using “ora-
cle” parameters) with the MSE predicted by the bounds. Later, we 
estimate the parameters directly from the noisy images, as out-
lined in Section III, and compare those results with various popu-
lar denoising methods. We also apply our method, with a minor 
modification, to color images. Finally, we address the practical case 
of denoising real noisy images where the noise characteristics are 
unknown and not necessarily Gaussian, or uncorrelated. In each 
case, we will show that our results are comparable, in terms of 
the MSE [peak signal-to-noise ratio (PSNR6 )], SSIM [45], and 
the recently introduced no-reference quality metric  [46] (wherev-
er applicable), with those obtained by state-of-the-art denoising 
methods and are, in many cases, vi- sually superior. 
  Since our method was specifically designed with the aim of    
achieving the theoretical limits of the performance, we first com-
pare our results to the predicted performance bounds [1]. For this 
first experiment, we compute the “oracle” denoising parameters 
from the noise-free images. These “oracle” clusters are then used 
to estimate moments    and  from the latent image. We also use 
the ground-truth image to identify the photometrically similar 
patches and compute weights        for each noise-free reference 
patch. The final denoising using the “oracle” param- eters is, of 
course, applied to the noisy image. A simple speedup for our 
method can be achieved by denoising only every third patch, 
bringing the average execution time down to approximately 17 s. 
Although this results in a minor drop of 0.2 dB in the PSNR, the 
visual differences are almost imperceptible. 
 

 

MSE PSNR SSIM 

BEAR 

31.1042 33.2026 0.8729 

FIREMAN 

16.9641 35.8355 0.9622 
 

TABLE:1 Denoising Performance 
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